
Kernel Pool Exploitation on Windows 7

Tarjei Mandt

kernelpool@gmail.com

Abstract. In Windows 7, Microsoft introduced safe unlinking to ad-
dress the growing number of security bulletins affecting the Windows
kernel. Prior to removing an entry from a doubly-linked list, safe un-
linking aims to detect memory corruption by validating the pointers to
adjacent list entries. Hence, an attacker cannot easily leverage generic
techniques in exploiting pool overflows or other pool corruption vulner-
abilities. In this paper, we show that in spite of the security measures
introduced, Windows 7 is still susceptible to generic kernel pool attacks.
In particular, we show that the pool allocator may under certain condi-
tions fail to safely unlink free list entries, thus allowing an attacker to
corrupt arbitrary memory. In order to thwart the presented attacks, we
propose ways to further harden and enhance the security of the kernel
pool.

Keywords: kernel pool, safe unlinking, exploitation

1 Introduction

As software bugs are hard to completely eliminate due to the complexity of
modern day computing, vendors are doing their best to isolate and prevent ex-
ploitation of security vulnerabilities. Mitigations such as DEP and ASLR have
been introduced in contemporary operating systems to address a variety of com-
monly used exploitation techniques. However, as exploit mitigations do not ad-
dress the root cause of security vulnerabilities, there will always be edge case
scenarios where they fall short. For instance, DEP alone is easily circumvented
using return-oriented programming (ROP) [15]. Furthermore, novel techniques
leveraging the capabilities of powerful application-embedded scripting engines
may bypass DEP and ASLR completely [4].

A complementary approach to exploit mitigations is privilege isolation. By
imposing restrictions on users and processes using the operating system’s built-
in security mechanisms, an attacker cannot easily access and manipulate system
files and registry information in a compromised system. Since the introduction
of user account control (UAC) in Vista, users no longer run regular applications
with administrative privileges by default. Additionally, modern browsers [2] and
document readers [13][12] use ”sandboxed” render processes to lessen the impact
of security vulnerabilities in parsing libraries and layout engines. In turn, this
has motivated attackers (as well as researchers) to focus their efforts on privilege
escalation attacks. By executing arbitrary code in the highest privileged ring,
operating system security is undermined.

Privilege escalation vulnerabilities are in most cases caused by bugs in the
operating system kernel or third party drivers. Many of the flaws originate in
the handling of dynamically allocated kernel pool memory. The kernel pool is
analogous to the user-mode heap and was for many years susceptible to generic
write-4 attacks abusing the unlink operation of doubly-linked lists [8][16]. In
response to the growing number of kernel vulnerabilities, Microsoft introduced
safe unlinking in Windows 7 [3]. Safe unlinking ensures that the pointers to
adjacent pool chunks on doubly-linked free lists are validated before a chunk is
unlinked.

An attacker’s goal in exploiting pool corruption vulnerabilities is to ulti-
mately execute arbitrary code in ring 0. This often starts with an arbitrary
memory write or n-byte corruption at a chosen location. In this paper, we show
that in spite of the security measures introduced, the kernel pool in Windows 7
is still susceptible to generic1 attacks. In turn, these attacks may allow an at-
tacker to fully compromise the operating system kernel. We also show that safe
unlinking, designed to remediate write-4 attacks, may under certain conditions
fail to achieve its goals and allow an attacker to corrupt arbitrary memory. In
order to thwart the presented attacks, we conclusively propose ways to further
harden and enhance the security of the kernel pool.

The rest of the paper is organized as follows. In Section 2 we elaborate on
the internal structures and changes made to the Windows 7 (and Vista) kernel
pool. In Section 3 and 4 we discuss and demonstrate practical kernel pool attacks
affecting Windows 7. In Section 5 we discuss counter-measures and propose ways
to harden the kernel pool. Finally, in Section 6 we provide a conclusion of the
paper.

2 Kernel Pool Internals

In this section, we elaborate on the kernel pool management structures and algo-
rithms involved in the allocation and deallocation of pool memory. Understand-
ing kernel pool behavior is vital in properly assessing its security and robustness.
For brevity, we assume the x86 architecture (32-bit). However, most structures
are applicable to AMD64/x64 (64-bit). Notable differences in the kernel pool
between x86 and x64 architectures are discussed in Section 2.9.

2.1 Non-Uniform Memory Architecture

For every new version of Windows, the memory manager is enhanced to bet-
ter support the Non-Uniform Memory Architecture (NUMA), a memory design
architecture used in modern multi-processor systems. NUMA dedicates differ-
ent memory banks to different processors, allowing local memory to be accessed
more quickly, while remote memory is accessed more slowly. The processors and
memory are grouped together in smaller units called nodes, defined by the KNODE
structure in the executive kernel.
1 Applicable to any n-byte pool corruption vulnerability.

typedef struct _KNODE

{

/*0x000*/ union _SLIST_HEADER PagedPoolSListHead;

/*0x008*/ union _SLIST_HEADER NonPagedPoolSListHead[3];

/*0x020*/ struct _GROUP_AFFINITY Affinity;

/*0x02C*/ ULONG32 ProximityId;

/*0x030*/ UINT16 NodeNumber;

/*0x032*/ UINT16 PrimaryNodeNumber;

/*0x034*/ UINT8 MaximumProcessors;

/*0x035*/ UINT8 Color;

/*0x036*/ struct _flags Flags;

/*0x037*/ UINT8 NodePad0;

/*0x038*/ ULONG32 Seed;

/*0x03C*/ ULONG32 MmShiftedColor;

/*0x040*/ ULONG32 FreeCount[2];

/*0x048*/ struct _CACHED_KSTACK_LIST CachedKernelStacks;

/*0x060*/ LONG32 ParkLock;

/*0x064*/ ULONG32 NodePad1;

/*0x068*/ UINT8 _PADDING0_[0x18];

} KNODE, *PKNODE;

On multi-node systems (nt!KeNumberNodes > 1), the memory manager will
always try to allocate from the ideal node. As such, KNODE provides information
as to where local memory is found in the Color field. This value is an array index
used by the allocation and free algorithms to associate nodes with its preferred
pool. Additionally, KNODE defines four singly-linked per-node lookaside lists for
free pool pages (discussed in Section 2.6).

2.2 System Memory Pools

At system initialization, the memory manager creates dynamically sized mem-
ory pools according to the number of system nodes. Each pool is defined by a
pool descriptor (discussed in Section 2.3), a management structure that tracks
pool usage and defines pool properties such as the memory type. There are two
distinct types of pool memory: paged and non-paged.

Paged pool memory can be allocated and accessed from any process con-
text, but only at IRQL < DPC/dispatch level. The number of paged pools
in use is given by nt!ExpNumberOfPagedPools. On uniprocessor systems, four
(4) paged pool descriptors are defined, denoted by indices 1 through 4 in the
nt!ExpPagedPoolDescriptor array. On multiprocessor systems, one (1) paged
pool descriptor is defined per node. In both cases, an additional paged pool de-
scriptor is defined for prototype pools / full page allocations, denoted by index 0
in nt!ExpPagedPoolDescriptor. Hence, in most desktop systems five (5) paged
pool descriptors are defined.

Non-paged pool memory is guaranteed to reside in physical memory at all
times. This is required by threads executing at IRQL >= DPC/dispatch level
(such as interrupt handlers), as page faults cannot be timely satisfied. The num-
ber of non-paged pools currently in use is given by nt!ExpNumberOfNonPagedPools.

On uniprocessor systems, the first index of the nt!PoolVector array points to
the non-paged pool descriptor. On multiprocessor systems, each node has its own
non-paged pool descriptor, indexed by the nt!ExpNonPagedPoolDescriptor ar-
ray.

Additionally, session pool memory (used by win32k) is used for session space
allocations and is unique to each user session. While non-paged session memory
use the global non-paged pool descriptor(s), paged session pool memory has
its own pool descriptor defined in nt!MM SESSION SPACE. To obtain the session
pool descriptor, Windows 7 parses the associated nt!EPROCESS structure (of the
currently executing thread) for the session space structure, and subsequently
finds the embedded paged pool descriptor.

2.3 Pool Descriptor

Much like the user-mode heap, every kernel pool requires a management struc-
ture. The pool descriptor is responsible for tracking the number of running allo-
cations, pages in use, and other information regarding pool usage. It also helps
the system to keep track of reusable pool chunks. The pool descriptor is defined
by the following structure (nt!POOL DESCRIPTOR).

typedef struct _POOL_DESCRIPTOR

{

/*0x000*/ enum _POOL_TYPE PoolType;

union {

/*0x004*/ struct _KGUARDED_MUTEX PagedLock;

/*0x004*/ ULONG32 NonPagedLock;

};

/*0x040*/ LONG32 RunningAllocs;

/*0x044*/ LONG32 RunningDeAllocs;

/*0x048*/ LONG32 TotalBigPages;

/*0x04C*/ LONG32 ThreadsProcessingDeferrals;

/*0x050*/ ULONG32 TotalBytes;

/*0x054*/ UINT8 _PADDING0_[0x2C];

/*0x080*/ ULONG32 PoolIndex;

/*0x084*/ UINT8 _PADDING1_[0x3C];

/*0x0C0*/ LONG32 TotalPages;

/*0x0C4*/ UINT8 _PADDING2_[0x3C];

/*0x100*/ VOID** PendingFrees;

/*0x104*/ LONG32 PendingFreeDepth;

/*0x108*/ UINT8 _PADDING3_[0x38];

/*0x140*/ struct _LIST_ENTRY ListHeads[512];

} POOL_DESCRIPTOR, *PPOOL_DESCRIPTOR;

The pool descriptor holds several important lists used by the memory man-
ager. The delayed free list, pointed to by PendingFrees, is a singly-linked list
of pool chunks waiting to be freed. It is explained in detail in Section 2.8. The
ListHeads is an array of doubly-linked lists of free pool chunks of the same
size. Unlike the delayed free list, the chunks in the ListHeads lists have been

freed and can be allocated by the memory manager at any time. We discuss the
ListHeads in the following section.

2.4 ListHeads Lists (Free Lists)

The ListHeads lists, or free lists, are ordered in size of 8-byte granularity and
used for allocations up to 4080 bytes2. The free chunks are indexed into the List-
Heads array by block size, computed as the requested number of bytes rounded
up to a multiple of 8 and divided by 8, or BlockSize = (NumberOfBytes+0xF)

>> 3. The rounding is performed to reserve space for the pool header, a structure
preceding all pool chunks. The pool header is defined as follows on x86 Windows.

typedef struct _POOL_HEADER

{

union {

struct {

/*0x000*/ UINT16 PreviousSize : 9;

/*0x000*/ UINT16 PoolIndex : 7;

/*0x002*/ UINT16 BlockSize : 9;

/*0x002*/ UINT16 PoolType : 7;

};

/*0x000*/ ULONG32 Ulong1;

};

union {

/*0x004*/ ULONG32 PoolTag;

struct {

/*0x004*/ UINT16 AllocatorBackTraceIndex;

/*0x006*/ UINT16 PoolTagHash;

};

};

} POOL_HEADER, *PPOOL_HEADER;

The pool header holds information necessary for the allocation and free algo-
rithms to operate properly. PreviousSize indicates the block size of the preced-
ing pool chunk. As the memory manager always tries to reduce fragmentation
by merging bordering free chunks, it is typically used to locate the pool header
of the previous chunk. PreviousSize may also be zero, in which case the pool
chunk is located at the beginning of a pool page.

PoolIndex provides the index into the associated pool descriptor array, such
as nt!ExpPagedPoolDescriptor. It is used by the free algorithm to make sure
the pool chunk is freed to the proper pool descriptor ListHeads. In Section 3.4,
we show how an attacker may corrupt this value in order to extend a pool header
corruption (such as a pool overflow) into an arbitrary memory corruption.

As its name suggests, PoolType defines a chunk’s pool type. However, it also
indicates if a chunk is busy or free. If a chunk is free, PoolType is set to zero. On
the other hand, if a chunk is busy, PoolType is set to its descriptor’s pool type (a

2 The remaining page fragment cannot be used if requested bytes exceed 4080.

value in POOL TYPE enum, shown below) OR’ed with a pool-in-use bitmask. This
bitmask is set to 2 on Vista and later, while it is set to 4 on XP/2003. E.g. for a
busy paged pool chunk on Vista and Windows 7, PoolType = PagedPool|2 =

3.

typedef enum _POOL_TYPE

{

NonPagedPool = 0 /*0x0*/,

PagedPool = 1 /*0x1*/,

NonPagedPoolMustSucceed = 2 /*0x2*/,

DontUseThisType = 3 /*0x3*/,

NonPagedPoolCacheAligned = 4 /*0x4*/,

PagedPoolCacheAligned = 5 /*0x5*/,

NonPagedPoolCacheAlignedMustS = 6 /*0x6*/,

MaxPoolType = 7 /*0x7*/,

NonPagedPoolSession = 32 /*0x20*/,

PagedPoolSession = 33 /*0x21*/,

NonPagedPoolMustSucceedSession = 34 /*0x22*/,

DontUseThisTypeSession = 35 /*0x23*/,

NonPagedPoolCacheAlignedSession = 36 /*0x24*/,

PagedPoolCacheAlignedSession = 37 /*0x25*/,

NonPagedPoolCacheAlignedMustSSession = 38 /*0x26*/

} POOL_TYPE, *PPOOL_TYPE;

If a pool chunk is free and is on a ListHeads list, its pool header is imme-
diately followed by a LIST ENTRY structure. For this reason, chunks of a single
block size (8 bytes) are not maintained by the ListHeads as they are not large
enough to hold the structure.

typedef struct _LIST_ENTRY

{

/*0x000*/ struct _LIST_ENTRY* Flink;

/*0x004*/ struct _LIST_ENTRY* Blink;

} LIST_ENTRY, *PLIST_ENTRY;

The LIST ENTRY structure is used to join pool chunks on doubly linked lists.
Historically, it has been the target in exploiting memory corruption vulnerabili-
ties in both the user-mode heap [5] and the kernel pool [8][16], primarily due to
well-known ”write-4” exploitation techniques.3 Microsoft addressed LIST ENTRY

attacks in the user-mode heap with the release of Windows XP SP2 [5], and
similarly in the kernel pool with Windows 7 [3].

2.5 Lookaside Lists

The kernel uses singly-linked lookaside (LIFO) lists for faster allocation and
deallocation of small pool chunks. They are designed to operate in highly con-
current code and use an atomic compare-and-exchange instruction in adding and

3 Overwriting the LIST ENTRY structure may cause an arbitrary value (pointer) to be
written at an arbitrary location in memory in the unlinking process.

removing entries. In order to better make use of CPU caching, lookaside lists
are defined per processor in the Processor Control Block (KPRCB). The KPRCB

structure holds lookaside lists for both paged (PPPagedLookasideList) and
non-paged (PPNPagedLookasideList) allocations, as well as special dedicated
lookaside lists (PPLookasideList) for frequently requested fixed size allocations
(such as for I/O request packets and memory descriptor lists).

typedef struct _KPRCB

{

...

/*0x5A0*/ struct _PP_LOOKASIDE_LIST PPLookasideList[16];

/*0x620*/ struct _GENERAL_LOOKASIDE_POOL PPNPagedLookasideList[32];

/*0xF20*/ struct _GENERAL_LOOKASIDE_POOL PPPagedLookasideList[32];

...

} KPRCB, *PKPRCB;

For the paged and non-paged lookaside lists, maximum block size is 0x20.
Hence, there are 32 unique lookaside lists per type. Each lookaside list is defined
by the GENERAL LOOKASIDE POOL structure, shown below.

typedef struct _GENERAL_LOOKASIDE_POOL

{

union

{

/*0x000*/ union _SLIST_HEADER ListHead;

/*0x000*/ struct _SINGLE_LIST_ENTRY SingleListHead;

};

/*0x008*/ UINT16 Depth;

/*0x00A*/ UINT16 MaximumDepth;

/*0x00C*/ ULONG32 TotalAllocates;

union

{

/*0x010*/ ULONG32 AllocateMisses;

/*0x010*/ ULONG32 AllocateHits;

};

/*0x014*/ ULONG32 TotalFrees;

union

{

/*0x018*/ ULONG32 FreeMisses;

/*0x018*/ ULONG32 FreeHits;

};

/*0x01C*/ enum _POOL_TYPE Type;

/*0x020*/ ULONG32 Tag;

/*0x024*/ ULONG32 Size;

union

{

/*0x028*/ PVOID AllocateEx;

/*0x028*/ PVOID Allocate;

};

union

{

/*0x02C*/ PVOID FreeEx;

/*0x02C*/ PVOID Free;

};

/*0x030*/ struct _LIST_ENTRY ListEntry;

/*0x038*/ ULONG32 LastTotalAllocates;

union

{

/*0x03C*/ ULONG32 LastAllocateMisses;

/*0x03C*/ ULONG32 LastAllocateHits;

};

/*0x040*/ ULONG32 Future[2];

} GENERAL_LOOKASIDE_POOL, *PGENERAL_LOOKASIDE_POOL;

In this structure, SingleListHead.Next points to the first free pool chunk
on the singly-linked lookaside list. The size of the lookaside list is limited by
the value of Depth, periodically adjusted by the balance set manager4 accord-
ing to the number of hits and misses on the lookaside list. Hence, a frequently
used lookaside list will have a larger Depth value than an infrequently used list.
The intial Depth is 4 (nt!ExMinimumLookasideDepth), with maximum being
MaximumDepth (256). If a lookaside list is full, the pool chunk is freed to the
appropriate ListHeads list instead.

Lookaside lists are also defined for the session pool. Paged session pool allo-
cations use separate lookaside lists (nt!ExpSessionPoolLookaside) defined in
session space. The maximum block size for the per-session lookaside lists is 0x19,
as set by nt!ExpSessionPoolSmallLists. Session pool lookaside lists use the
GENERAL LOOKASIDE structure, identical to GENERAL LOOKASIDE POOL but with
additional padding. For non-paged session pool allocations, the formerly dis-
cussed non-paged per-processor lookaside lists are used.

Lookaside lists for pool chunks are disabled if the hot/cold page separa-
tion pool flag is set (nt!ExpPoolFlags & 0x100). The flag is set during sys-
tem boot-up to increase speed and reduce memory footprint. A timer (set in
nt!ExpBootFinishedTimer) turns off hot/cold page separation 2 minutes after
boot.

2.6 Large Pool Allocations

The pool descriptor ListHeads maintains chunks less than a page. Pool al-
locations greater than 4080 bytes (requiring a page or more) are handled by
nt!ExpAllocateBigPool. In turn, this function calls nt!MiAllocatePoolPages,
the pool page allocator, which rounds the requested size up to the nearest page
size. A ”frag” chunk of block size 1 and previous size 0 is placed immediately
after the large pool allocation such that the pool allocator can make use of the
remaining page fragment. The excess bytes are then put back at the tail of the
appropriate pool descriptor ListHeads list.

4 The balance set manager is a system thread executing nt!KeBalanceSetManager

which periodically processes work items and resizes lookaside lists.

Recall from Section 2.1 that each node (defined by KNODE) has 4 singly-linked
lookaside lists associated with them. These lists are used by the pool page al-
locator in rapidly servicing requests for small page counts. For paged memory,
KNODE defines one lookaside list (PagedPoolSListHead) for single page alloca-
tions. For non-paged allocations, lookaside lists (NonPagedPoolSListHead[3])
for page counts 1, 2, and 3 are defined. The size of the pool page lookaside lists
is determined by the number of physical pages present in the system.

If lookaside lists cannot be used, an allocation bitmap is used to obtain the re-
quested pool pages. The bitmap (defined in RTL BITMAP) is an array of bits that
indicate which memory pages are in use and is created for every major pool type.
It is searched for the first index that holds the requested number of unused pages.
For the paged pool, the bitmap is defined in the MM PAGED POOL INFO struc-
ture, pointed to by nt!MmPagedPoolInfo. For the non-paged pool, the bitmap
is pointed to by nt!MiNonPagedPoolBitMap. For the session pool, the bitmap is
defined in the MM SESSION SPACE structure.

For most large pool allocations, nt!ExAllocatePoolWithTag will request
an additional 4 bytes (8 on x64) to store the allocation size at the end of the
pool body. This value is subsequently checked when the allocation is freed (in
ExFreePoolWithTag) to catch possible pool overflows.

2.7 Allocation Algorithm

In order to allocate pool memory, kernel modules and third-party drivers call
ExAllocatePoolWithTag (or any of its wrapper functions), exported by the ex-
ecutive kernel. This function will first attempt to use the lookaside lists, followed
by the ListHeads lists, and if no pool chunk could be returned, request a page
from the pool page allocator. The following pseudocode roughly outlines its im-
plementation.

PVOID

ExAllocatePoolWithTag(POOL_TYPE PoolType,

SIZE_T NumberOfBytes,

ULONG Tag)

// call pool page allocator if size is above 4080 bytes

if (NumberOfBytes > 0xff0) {

// call nt!ExpAllocateBigPool

}

// attempt to use lookaside lists

if (PoolType & PagedPool) {

if (PoolType & SessionPool && BlockSize <= 0x19) {

// try the session paged lookaside list

// return on success

}

else if (BlockSize <= 0x20) {

// try the per-processor paged lookaside list

// return on success

}

// lock paged pool descriptor (round robin or local node)

}

else { // NonPagedPool

if (BlockSize <= 0x20) {

// try the per-processor non-paged lookaside list

// return on success

}

// lock non-paged pool descriptor (local node)

}

// attempt to use listheads lists

for (n = BlockSize-1; n < 512; n++) {

if (ListHeads[n].Flink == &ListHeads[n]) { // empty

continue; // try next block size

}

// safe unlink ListHeads[n].Flink

// split if larger than needed

// return chunk

}

// no chunk found, call nt!MiAllocatePoolPages

// split page and return chunk

If a chunk larger than the size requested is returned from the ListHeads[n]

list, the chunk is split. In order to reduce fragmentation, the part of the oversized
chunk returned by the allocator depends on its relative page position. If the
chunk is page aligned, the requested size is allocated from the front of the chunk.
If the chunk is not page aligned, the requested size is allocated from the back
of the chunk. Either way, the remaining (unused) fragment of the split chunk is
put at the tail of the appropriate ListHeads list.

2.8 Free Algorithm

The free algorithm, implemented by ExFreePoolWithTag, inspects the pool
header of the chunk to be freed and frees it to the appropriate list. In order
to reduce fragmentation, it also attempts to coalesce bordering free chunks. The
following pseudocode shows how the algorithm works.

VOID

ExFreePoolWithTag(PVOID Entry,

ULONG Tag)

if (PAGE_ALIGNED(Entry)) {

// call nt!MiFreePoolPages

// return on success

}

if (Entry->BlockSize != NextEntry->PreviousSize)

BugCheckEx(BAD_POOL_HEADER);

if (Entry->PoolType & SessionPagedPool && Entry->BlockSize <= 0x19) {

// put in session pool lookaside list

// return on success

}

else if (Entry->BlockSize <= 0x20) {

if (Entry->PoolType & PagedPool) {

// put in per-processor paged lookaside list

// return on success

}

else { // NonPagedPool

// put in per-processor non-paged lookaside list

// return on success

}

}

if (ExpPoolFlags & DELAY_FREE) { // 0x200

if (PendingFreeDepth >= 0x20) {

// call nt!ExDeferredFreePool

}

// add Entry to PendingFrees list

}

else {

if (IS_FREE(NextEntry) && !PAGE_ALIGNED(NextEntry)) {

// safe unlink next entry

// merge next with current chunk

}

if (IS_FREE(PreviousEntry)) {

// safe unlink previous entry

// merge previous with current chunk

}

if (IS_FULL_PAGE(Entry))

// call nt!MiFreePoolPages

else {

// insert Entry to ListHeads[BlockSize - 1]

}

}

The DELAY FREE pool flag (nt!ExpPoolFlags & 0x200) enables a perfor-
mance optimization that frees several pool allocations at once to amortize pool
acquisition and release. This mechanism was briefly mentioned in [11] and is
enabled on Windows XP SP2 or higher if the number of available physical
pages (nt!MmNumberOfPhysicalPages) is greater or equal to 0x1fc00.5 When
used, every new call to ExFreePoolWithTag appends the chunk to be freed to
the PendingFrees list, specific to each pool descriptor. If the list holds 32 or
more chunks (determined by PendingFreeDepth), it is processed in a call to

5 Roughly translates to 508 megabytes of RAM on IA-32 and AMD64 architectures.

ExDeferredFreePool. This function iterates over each entry and frees it to the
appropriate ListHeads list, as illustrated by the following pseudocode.

VOID

ExDeferredFreePool(PPOOL_DESCRIPTOR PoolDesc,

BOOLEAN bMultipleThreads)

for each (Entry in PendingFrees) {

if (IS_FREE(NextEntry) && !PAGE_ALIGNED(NextEntry)) {

// safe unlink next entry

// merge next with current chunk

}

if (IS_FREE(PreviousEntry)) {

// safe unlink previous entry

// merge previous with current chunk

}

if (IS_FULL_PAGE(Entry))

// add to full page list

else {

// insert Entry to ListHeads[BlockSize - 1]

}

}

for each (page in full page list) {

// call nt!MiFreePoolPages

}

Frees to the lookaside and pool descriptor ListHeads are always put in the
front of the appropriate list. Exceptions to this rule are remaining fragments of
split blocks which are put at the tail of the list. Blocks are split when the memory
manager returns chunks larger than the requested size (as explained in Section
2.7), such as full pages split in ExpBigPoolAllocation and ListHeads entries
split in ExAllocatePoolWithTag. In order to use the CPU cache as frequently
as possible, allocations are always made from the most recently used chunks,
from the front of the appropriate list.

2.9 AMD64/x64 Kernel Pool Changes

Despite supporting a larger physical address space, x64 Windows does not in-
troduce any significant changes to the kernel pool. However, to accommodate
the change in pointer width, block size granularity is increased to 16 bytes, cal-
culated as BlockSize = (NumberOfBytes+0x1F) >> 4. To reflect this change,
the pool header is updated accordingly.

typedef struct _POOL_HEADER

{

union

{

struct

{

/*0x000*/ ULONG32 PreviousSize : 8;

/*0x000*/ ULONG32 PoolIndex : 8;

/*0x000*/ ULONG32 BlockSize : 8;

/*0x000*/ ULONG32 PoolType : 8;

};

/*0x000*/ ULONG32 Ulong1;

};

/*0x004*/ ULONG32 PoolTag;

union

{

/*0x008*/ struct _EPROCESS* ProcessBilled;

struct

{

/*0x008*/ UINT16 AllocatorBackTraceIndex;

/*0x00A*/ UINT16 PoolTagHash;

/*0x00C*/ UINT8 _PADDING0_[0x4];

};

};

} POOL_HEADER, *PPOOL_HEADER;

Due to the change in block size granularity, PreviousSize and BlockSize

are both reduced to eight bits. Thus, the pool descriptor ListHeads holds 256
doubly-linked lists, and not 512 as on x86. This also allows for an additional
bit to be assigned to PoolIndex, hence 256 nodes (pool descriptors) may be
supported on x64, over 128 on x86. Furthermore, the pool header is expanded to
16 bytes, and includes the ProcessBilled pointer used in quota management
to identify the process charged for an allocation. On x86, this pointer is stored
in the last four bytes of the pool body. We discuss attacks leveraging the quota
process pointer in Section 3.5.

3 Kernel Pool Attacks

In this section, we discuss several practical attacks on the Windows 7 kernel
pool. First, in Section 3.1, we show an attack on the LIST ENTRY structure in the
(un)safe unlinking of ListHeads pool chunks. In Section 3.2 and Section 3.3 we
show attacks on the singly-linked lookaside and deferred free lists respectively.
In Section 3.4 we present an attack on the pool header of allocated chunks
being freed, and finally, in Section 3.5 we show an attack on quota charged pool
allocations.

3.1 ListEntry Flink Overwrite

In order to address generic exploitation of kernel pool overflows, Windows 7
performs safe unlinking to validate the LIST ENTRY pointers of pool chunks
on ListHeads lists. However, in allocating a pool chunk from ListHeads[n]

(for a given block size), the algorithm validates the LIST ENTRY structure of

ListHeads[n] and not the structure of the actual chunk being unlinked. Con-
sequently, overwriting the forward link in a free chunk may cause the address of
ListHeads[n] to be written to an attacker controlled address (Figure 1).

L
is

tE
n
tr

y

Flink

Blink

Pool Header

Flink

Pool Header

Flink

FakeEntry

Blink

Blink

Pool Descriptor ListHeads

ListHeads[n].Blink

(validated in safe unlink)

ListHeads[n].Flink

(validated in safe unlink)

P
o
o
l o

v
e
rflo

w

NextEntry.Blink

(validated in safe unlink)

PreviousEntry.Flink

(validated in safe unlink)

Chunk to be unlinked

After unlink

• FakeEntry.Blink = ListHeads[n]

• ListHeads[n].Flink = FakeEntry

Fig. 1. ListEntry Flink Overwrite

This attack requires at least two free chunks to be present on the target
ListHeads[n] list. Otherwise, ListHeads[n].Blink will validate the unlinked
chunk’s forward link. In Example 1, the forward link of a pool chunk on a
ListHeads list has been corrupted with an address chosen by the attacker. In
turn, when this chunk is allocated in ExAllocatePoolWithTag, the algorithm
attempts to write the address of ListHeads[n] (esi) at the backward link of
the LIST ENTRY structure at the attacker controlled address (eax).

eax=80808080 ebx=829848c0 ecx=8cc15768 edx=8cc43298 esi=82984a18 edi=[..]

eip=8296f067 esp=82974c00 ebp=82974c48 iopl=0 nv up ei pl zr na pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010246

nt!ExAllocatePoolWithTag+0x4b7:

8296f067 897004 mov dword ptr [eax+4],esi ds:0023:80808084=????????

Example 1: ListEntry Flink overwrite

Although the value of esi cannot easily be determined from a user-mode
context, it is sometimes possible to infer its value. For instance, if only a single

non-paged pool is defined (as discussed in 2.2), esi will point to a fixed loca-
tion (nt!NonPagedPoolDescriptor) in the data segment of ntoskrnl. If the
pool descriptor was allocated from memory, an assumption can be made about
its whereabouts from the defined pool memory range. Thus, an attacker could
overwrite important global variables [14] or kernel object pointers [6] (e.g. via a
partial pointer overwrite) in order to gain arbitrary code execution.

The attacker can also extend the arbitrary write into a fully controlled kernel
allocation using a user-mode pointer in the overwrite. This follows from the
fact that ListHeads[n].Flink is updated to point to the next free chunk (the
attacker controlled pointer) after unlinking the corrupted chunk. Because the
backward link at the attacker supplied address was updated to point back to
ListHeads[n], the pool allocator has no problems in safely unlinking the user-
mode pointer from the free list.

3.2 Lookaside Next Pointer Overwrite

Lookaside lists are designed to be fast and lightweight, hence do not introduce the
same consistency checking as the doubly-linked ListHeads lists. Being singly-
linked, each entry on a lookaside list holds a pointer to the next entry. As there
are no checks asserting the validity of these pointers, an attacker may, using a
pool corruption vulnerability, coerce the pool allocator into returning an arbi-
trary address in retrieving the next free lookaside chunk. In turn, this may allow
the attacker to corrupt arbitrary kernel memory.

Header

Next

arbitrary

address

PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

Per-Processor Non-

Paged Lookaside Lists P
o
o
l o

v
e
rflo

w

Pool overflow into a

lookaside list chunk

PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

After an allocation has been

made for BlockSize 2, the

Next pointer points to the

attacker supplied address

arbitrary

address

Fig. 2. Lookaside Pool Chunk Pointer Overwrite

As discussed in Section 2.5, the memory manager uses lookaside lists both
for pool chunks and pool pages. For lookaside pool chunks, the Next pointer
directly follows the 8-byte pool header (POOL HEADER). Thus, overwriting the
Next pointer requires at most a 12-byte overflow on x86. In order for a pool
chunk to be freed to a lookaside list, the following must hold:

– BlockSize <= 0x20 for (paged/non-paged) pool chunks

– BlockSize <= 0x19 for paged session pool chunks

– Lookaside list for target BlockSize is not full

– Hot/cold page separation is not used (ExpPoolFlags & 0x100)

In order to extend a lookaside Next pointer corruption into an n-byte arbi-
trary memory overwrite, allocations of the target block size must be made until
the corrupted pointer is returned (Figure 2). Furthermore, the contents of the
allocated chunk must be controlled to some degree in order to influence the data
used to overwrite. For paged pool allocations, native APIs that allocate unicode
strings such as NtCreateSymbolicLinkObject provide a convenient way for fill-
ing any sized chunk with almost any combination of bytes. Such APIs can also be
used in defragmenting and manipulating the pool memory layout for controlling
exploitable primitives such as uninitialized pointers and double frees.

PagedPoolSListHead

NonPagedPool

SListHead[0]

Next

Depth

NonPagedPoolSListHead[1]

NonPagedPoolSListHead[2]

Node (KNODE)

Pool page

(0x1000

bytes)

Next

P
o
o
l o

v
e
rflo

w

Page-aligned pointer to

next lookaside pool page

PagedPoolSListHead

NonPagedPool

SListHead[0]

Next

Depth

NonPagedPoolSListHead[1]

NonPagedPoolSListHead[2]

arbitrary

address

MiAllocatePoolPages

returns a page with an

address we control

arbitrary

address

Fig. 3. Lookaside Pool Page Pointer Overwrite

Unlike lookaside pool chunks, lookaside pool pages (Figure 3) store the Next

pointer at offset null as there are no pool headers associated with them. An
allocated pool page is freed to a lookaside list if the following hold:

– NumberOfPages = 1 for paged pool pages
– NumberOfPages <= 3 for non-paged pool pages
– Lookaside list for target page count is not full

Pool pages are returned by nt!MiAllocatePoolPages whenever the mem-
ory manager has to request additional pool memory, not available from the
ListHeads or lookaside lists. As this is commonly performed by many concur-
rent system threads, manipulating the kernel pool layout in order to position
an overflow next to a free pool page on a lookaside list is obviously easier said
than done. When working with lookaside pool chunks, on the other hand, it
is possible to use infrequently requested block size values in order to get more
fine-grained control of the memory layout. This can be done by examining the
TotalAllocates value in the lookaside management structures.

3.3 PendingFrees Next Pointer Overwrite

Recall from Section 2.8 that pool entries waiting to be freed are stored on singly-
linked PendingFrees lists. As no checks are performed in traversing these lists,
an attacker could leverage a pool corruption vulnerability to corrupt the Next

pointer of a PendingFrees list entry. In turn, this would allow the attacker to
free an arbitrary address to a chosen pool descriptor ListHeads list and possibly
control the memory of subsequent pool allocations (Figure 4).

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

0x140

+ N*8

Attacker controlled address is

returned in requesting memory

from ListHeads[n]

Paged Pool Descriptor

Data

Pool Header

Next

Flink

Blink

Pool Header

Flink

Blink

arbitrary

address

P
o
o
l o

v
e
rflo

w

Put in front of

ListHeads[n] on free

Fig. 4. PendingFrees Pointer Overwrite

One notable caveat to attacking the deferred free list is that the kernel pool
processes this list very often (once every 32nd free). Hundreds of threads could
in fact be scheduled to the same kernel pool, and also be processed in parallel6

on multi-core machines. Thus, it is very likely that a chunk targeted by a pool
overflow already has been removed from the deferred free list and put on a
ListHeads list. For this reason, we can hardly consider this attack practical.
However, as some pool descriptors are used less frequently than others (such as
the session pool descriptor), attacks on the deferred free list may be feasible in
certain situations.

3.4 PoolIndex Overwrite

If more than one pool descriptor is defined for a given pool type, a pool chunk’s
PoolIndex denotes the index into the associated pool descriptor array. Hence,
upon working with ListHeads entries, a pool chunk is always freed to its proper
pool descriptor. However, due to insufficient validation, a malformed PoolIndex

may trigger an out-of-bounds array dereference and subsequently allow an at-
tacker to overwrite arbitrary kernel memory.

8b1ac000

8b1ad140

8b1ae280

8b1af3c0

8b1b0500

0

0

0

0

0

1

2

3

4

5

6

…

15

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Data

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

Virtual Address Index

Flink

Pool Header

Blink

0x140

+ N*8

Flink

Blink

User-controlled

pointers

Updated with pointer

to our freed chunk

We allocate the virtual

null memory page to

control the contents of

the paged pool

descriptor

Freed pool chunk

nt!ExpPagedPoolDescriptor

NULL Paged Pool Descriptor

PoolIndex set to 5

Fig. 5. PoolIndex Overwrite on Free

For paged pools, PoolIndex always denotes an index into the paged pool
descriptor array (nt!ExpPagedPoolDescriptor). On checked builds, the index

6 Each pool descriptor implements a lock, so two threads will never actually operate
on the same free list simultaneously.

value is validated in a compare against nt!ExpNumberOfPagedPools to pre-
vent any out-of-bounds array access. However, on free (retail) builds, the in-
dex is not validated. For non-paged pools, PoolIndex denotes an index into
nt!ExpNonPagedPoolDescriptor only when there are multiple nodes present in
a NUMA-aware system. Again, on free builds, PoolIndex is not validated.

A malformed PoolIndex (requiring only a 2-byte pool overflow) may cause an
allocated pool chunk to be freed to a null-pointer pool descriptor (Figure 5). By
mapping the virtual null-page, an attacker may fully control the pool descriptor
and its ListHeads entries. In turn, this may allow the attacker to write the
address of a pool chunk to an arbitrary address when linking in to a list. This is
because the Blink of the chunk currently in front is updated with the address
of the freed chunk, such that ListHeads[n].Flink->Blink = FreedChunk. Of
note, as the freed chunk is not returned to any real pool descriptor, there is no
need to clean up (remove stale entries, etc.) the kernel pool.

0

1

2

3

4

5

…

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Data

0x0 PoolType

0x4 PagedLock

…

0x100 PendingFrees

0x104 PendingFreesDepth

0x140 ListHeads[512]

Virtual

Address

Index

0x140

+ N*8

Freed chunks are put in front of the

linked list, hence the blink of the block

previously in front is updated

We allocate the virtual null

memory page to control

the contents of the ”null”

paged pool descriptor

15

Freed pool chunk
Paged Pool Descriptor

Data

Pool Header

Next

nt!ExpPagedPoolDescriptor

1st chunk to be

linked into

ListHeads[n]

Flink

Blink

8b1ac000

8b1ad140

8b1ae280

8b1af3c0

8b1b0500

0

0

0

Pool Header

Flink

Blink

Pool Header

Flink

Blink

Put in front of ListHeads[n]

Fig. 6. PoolIndex Overwrite on Delayed Free

If delayed pool frees (as described in Section 2.8) is enabled, a similar effect
can be achieved by creating a fake PendingFrees list (Figure 6). In this case, the
first entry on the list would point to an attacker controlled address. Additionally,
the value of PendingFreeDepth in the pool descriptor would be greater or equal
to 0x20 to trigger processing of the PendingFrees list.

Example 2 demonstrates how a PoolIndex overwrite could potentially cause
a user-controlled page address (eax) to be written to an arbitrary destination
address (esi). In order to execute arbitrary code, an attacker could leverage

this method to overwrite an infrequently used kernel function pointer with the
user-mode page address, and trigger its execution from the same process context.

eax=20000008 ebx=000001ff ecx=000001ff edx=00000538 esi=80808080 edi=[..]

eip=8293c943 esp=9c05fb20 ebp=9c05fb58 iopl=0 nv up ei pl nz na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010202

nt!ExDeferredFreePool+0x2e3:

8293c943 894604 mov dword ptr [esi+4],eax ds:0023:80808084=????????

Example 2: PoolIndex overwrite on delayed free

The PoolIndex overwrite attack can be applied to any pool type if also
the chunk’s PoolType is overwritten (e.g. by setting it to PagedPool). As this
requires the BlockSize to be overwritten as well, the attacker must either know
the size of the overflown chunk or create a fake bordering chunk embedded inside
it. This is required as FreedBlock->BlockSize = NextBlock->PreviousSize

must hold, as checked by the free algorithm. Additionally, the block size should
be greater than 0x20 to avoid lookaside lists (which ignore the PoolIndex). Note,
however, that embedded pool chunks may potentially corrupt important fields
or pointers in the chunk data.

3.5 Quota Process Pointer Overwrite

As processes can be charged for allocated pool memory, pool allocations must
provide sufficient information for the pool algorithms to return the charged quota
to the right process. For this reason, pool chunks may optionally store a pointer
to the associated process object. On x64, the process object pointer is stored in
the last eight bytes of the pool header as described in Section 2.9, while on x86,
the pointer is appended to the pool body. Overwriting this pointer (Figure 7) in
a pool corruption vulnerability could allow an attacker to free an in-use process
object or corrupt arbitrary memory in returning the charged quota.

Pool Header

Pool Header

P
re

v
io

u
s
S

iz
e

P
o
o
lI
n
d
e
x

B
lo

c
k
S

iz
e

P
o
o
lT

y
p
e

Data
Process

Pointer
… Pool overflow

Pool

Header

Fig. 7. Quota Process Pointer Overwrite (x64)

Whenever a pool allocation is freed, the free algorithm inspects the pool type
for the quota bit (0x8) before actually returning the memory to the proper free
list or lookaside. If the bit is set, it will attempt to return the charged quota
by calling nt!PspReturnQuota and then dereference the associated process ob-
ject. Thus, overwriting the process object pointer could allow an attacker to
decrement the reference (pointer) count of an arbitrary process object. Refer-
ence count inconsistencies could subsequently lead to use-after-frees if the right
conditions are met (such as the handle count being zero when the reference count
is lowered to zero).

Pool Header
Process

Pointer
Pool overflow Pool Header

EPROCESS EPROCESS_QUOTA_BLOCK

Address of executive process object

controlled by the attacker

Usage counter decremented

on free, for which the address

is controlled by the attacker

Quota charged pool allocation (x86)

Fig. 8. Quota Process Pointer Overwrite (x86)

If the process object pointer is replaced with a pointer to user-mode mem-
ory, the attacker could create a fake EPROCESS object to control the pointer to
the EPROCESS QUOTA BLOCK structure (Figure 8), in which quota information is
stored. On free, the value indicating the quota used in this structure is updated,
by subtracting the size of the allocation. Thus, an attacker could decrement the
value of an arbitrary address upon returning the charged quota. An attacker
can mount both attacks on any pool allocation as long as the quota bit and the
quota process object pointer are both set.

4 Case Study: CVE-2010-1893

In this section, we apply the PoolIndex overwrite technique described in Section
3.4 to exploit a pool overflow in the Windows TCP/IP kernel module (CVE-2010-
1893), addressed in MS10-058 [10]. The described attack operates solely on pool
management structures, hences does not rely on the data held within any of the
involved pool chunks.

4.1 About the Vulnerability

The Windows TCP/IP kernel module, or tcpip.sys, implements several functions
for controlling the mode of a socket. These functions are for the most part reach-
able from user-mode by calling WSAIoctl and providing the I/O control code for

the desired operation. In specifying the SIO ADDRESS LIST SORT ioctl, tcpip.sys
calls IppSortDestinationAddresses() to sort a list of IPv6 and IPv4 destina-
tion addresses to determine the best available address for making a connection.
This function was found vulnerable [17] to an integer overflow on Windows
7/Windows 2008 R2 and Windows Vista/Windows 2008 as it did not use safe
integer functions consistently. Consequently, specifying a large number of ad-
dresses for an address list could result in an undersized buffer allocation, leading
to a pool overflow in IppFlattenAddressList().

The vulnerability essentially allows an attacker to corrupt adjacent pool
memory using any combination of bytes, in SOCKADDR IN6 sized records (0x1c
bytes). The memory copy stops at the point where the sin6 family member
of the structure no longer equals 0x17 (AF INET6). However, as this check is
made after the copy has taken place, the attacker is not required to set this field
when overflowing only a single address record.

4.2 Preparing Pool Memory

An important aspect of kernel pool exploitation is being able to consistently
overwrite the desired memory. As the fragmented state of the kernel pool make
the locality of allocations unpredictable, the attacker must first defragment the
kernel pool using kernel objects or other controllable memory allocations. The
goal in this respect is to allocate all the free chunks such that the pool allocator
returns a fresh page. Filling newly allocated pages with same sized allocations
and freeing every second allocation allows the attacker to create holes for the
vulnerable buffer to fall into. This would in turn enable the attacker to overflow
the object or memory allocation used to fill the kernel pool.

kd> !pool @eax

Pool page 976e34c8 region is Nonpaged pool

976e32e0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

976e3340 size: 60 previous size: 60 (Free) IoCo

976e33a0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

976e3400 size: 60 previous size: 60 (Free) IoCo

976e3460 size: 60 previous size: 60 (Allocated) IoCo (Protected)

*976e34c0 size: 60 previous size: 60 (Allocated) *Ipas

Pooltag Ipas : IP Buffers for Address Sort, Binary : tcpip.sys

976e3520 size: 60 previous size: 60 (Allocated) IoCo (Protected)

976e3580 size: 60 previous size: 60 (Free) IoCo

976e35e0 size: 60 previous size: 60 (Allocated) IoCo (Protected)

976e3640 size: 60 previous size: 60 (Free) IoCo

Example 3: Address sort buffer allocated in user fragmented pool

In Example 3, the kernel pool has been filled with IoCompletionReserve

objects (using NtAllocateReserveObject [7]), for which every second alloca-
tion has been subsequently freed. Thus, when an address sort buffer match-
ing the size (three SOCKADDR IN6 entries) of the freed chunks is allocated in
IppSortDestinationAddresses(), chances are that it will fall into one of the
holes created.

4.3 Using PoolIndex Overwrite

In order to leverage the PoolIndex attack, the attacker must overflow the pool
header of the following pool chunk and set its PoolType to PagedPool|InUse (3),
and its PoolIndex to an out-of-bounds index (e.g. 5 on most single processor
systems), as shown in Example 4. This would cause a null-pointer pool descriptor
to be referenced upon freeing the corrupted pool chunk.

kd> dt nt!_POOL_HEADER 976e3520

+0x000 PreviousSize : 0y000001100 (0xc)

+0x000 PoolIndex : 0y0000101 (0x5) <-- out-of-bounds index

+0x002 BlockSize : 0y000001100 (0xc)

+0x002 PoolType : 0y0000011 (0x3) <-- PagedPool|InUse

+0x000 Ulong1 : 0x60c0a0c

+0x004 PoolTag : 0xef436f49

+0x004 AllocatorBackTraceIndex : 0x6f49

+0x006 PoolTagHash : 0xef43

Example 4: Pool header after overflow - corrupting PoolIndex

In the function of Listing 1, we initialize the necessary pool descriptor values
to carry out the attack. In this function, PoolAddress points to a user-controlled
pool chunk (e.g. allocated on a user-mode page), and WriteAddress sets the
address where the PoolAddress pointer is written.

VOID

InitPoolDescriptor(PPOOL_DESCRIPTOR PoolDescriptor ,

PPOOL_HEADER PoolAddress ,

PVOID WriteAddress)

{

ULONG i;

RtlZeroMemory(PoolDescriptor ,sizeof(POOL_DESCRIPTOR));

PoolDescriptor ->PoolType = PagedPool;

PoolDescriptor ->PagedLock.Count = 1;

// create pending frees list

PoolDescriptor ->PendingFreeDepth = 0x20;

PoolDescriptor ->PendingFrees = (VOID **)(PoolAddress +1);

// create ListHeads entries with target address

for (i=0; i <512; i++) {

PoolDescriptor ->ListHeads[i]. Flink = (PCHAR)

WriteAddress - sizeof(PVOID);

PoolDescriptor ->ListHeads[i]. Blink = (PCHAR)

WriteAddress - sizeof(PVOID);

}

}

Listing 1. Function initializing a crafted pool descriptor

We assume the pending frees list to be used as most systems have 512MBs
RAM or more. Thus, the address of the user-controlled pool chunk will end
up being written to the address indicated by WriteAddress in the process of
linking in. This can be leveraged to overwrite a kernel function pointer, making
exploitation trivial. If the pending frees list was not used, the address of the
freed kernel pool chunk (a kernel address) would end up being written to the
address specified, in which case other means such as partial pointer overwrites
would be required to execute arbitrary code.

The final task before triggering the overflow is to initialize the memory
pointed to by PoolAddress such that the fake pool chunk (on the pending frees
list) is properly returned to the crafted ListHeads lists (triggering the arbitrary
write). In the function of Listing 2 we create a layout of two bordering pool
chunks for which PoolIndex again references an out-of-bounds index into the
associated pool descriptor array. Additionally, BlockSize must be large enough
to avoid lookaside lists from being used.

#define BASE_POOL_TYPE_MASK 1

#define POOL_IN_USE_MASK 2

#define BLOCK_SHIFT 3 // 4 on x64

VOID

InitPoolChunks(PVOID PoolAddress , USHORT BlockSize)

{

POOL_HEADER * pool;

SLIST_ENTRY * entry;

// chunk to be freed

pool = (POOL_HEADER *) PoolAddress;

pool ->PreviousSize = 0;

pool ->PoolIndex = 5; // out -of -bounds pool index

pool ->BlockSize = BlockSize;

pool ->PoolType = POOL_IN_USE_MASK | (PagedPool &

BASE_POOL_TYPE_MASK);

// last chunk on the pending frees list

entry = (SLIST_ENTRY *) ((PCHAR)PoolAddress + sizeof(

POOL_HEADER)));

entry ->Next = NULL;

// bordering chunk (busy to avoid coalescing)

pool = (POOL_HEADER *) ((PCHAR)PoolAddress + (BlockSize

<< BLOCK_SHIFT));

pool ->PreviousSize = BlockSize;

pool ->PoolIndex = 0;

pool ->BlockSize = BlockSize;

pool ->PoolType = POOL_IN_USE_MASK | (PagedPool &

BASE_POOL_TYPE_MASK);

}

Listing 2. Function initializing a crafted pool layout

5 Kernel Pool Hardening

While the introduction of safe unlinking is a step in the right direction, kernel
pool exploitation prevention still has a long way to go in terms of matching up
against the robustness of the userland heap. In this section, we propose ways
to address the attacks discussed in Section 3, as well as suggestions on how to
further improve the kernel pool.

5.1 ListEntry Flink Overwrite

Safe unlinking was introduced in the kernel pool to prevent generic exploitation
of pool overflows. However, as shown in Section 3.1, insufficient validation may
allow an attacker to corrupt arbitrary memory while allocating an entry from a
free list (ListHeads). As previously pointed out, this is caused by safe unlinking
not being performed on the actual chunk being unlinked, but rather on the
LIST ENTRY structure of the target ListHeads array entry. Thus, an easy fix
would be to properly validate the forward and backward link of the chunk being
unlinked.

A prime concern in introducing additional mitigations to the already highly
optimized pool management algorithms is whether these changes could signifi-
cantly impact performance [3]. The biggest concern is not the number of addi-
tional instructions introduced, but rather if the change requires additional paging
operations, which are very expensive in terms of performance. Addressing the
attack in Section 3.1 could possibly impact performance as the address of the
unlinked chunk’s forward link is not guaranteed to be paged into memory, hence
could trigger a page-fault upon safe unlinking.

5.2 Lookaside Next Pointer Overwrite

As lookaside lists are inherently insecure, addressing their shortcomings without
making significant changes to the kernel pool is clearly a challenging task. In
the Vista and Windows 7 heap, lookaside lists have been removed in favor of the
low fragmentation heap [9]. The LFH avoids the use of embedded pointers and
dramatically reduces an attacker’s ability to accurately manipulate the heap.
Thus, a similar approach could be used in the kernel. However, removing the
highly optimized lookaside lists would probably impact performance to some
degree.

Header
PPNPagedLookasideList[0]

PPNPagedLookasideList[1]

L
is

tH
e
a
d

Next

Depth

PPNPagedLookasideList[2]

Per-Processor Non-

Paged Lookaside Lists

Cookie

Next

P
o
o
l o

v
e
rflo

w

Header

Cookie

Next

ExAllocatePoolWithTag verifies

Cookie before returning the chunk

Fig. 9. Lookside pool chunk cookie

Alternatively, pool chunk integrity checks could be added to help prevent
exploitation of lookaside list pointers. As all pool chunks must reserve space
for the LIST ENTRY structure and lookaside pointers only require half the size
(SLIST ENTRY), pool chunks on lookaside lists could store a 4 byte (or 8 on x64)
cookie before the Next pointer (Figure 9). This cookie should be non-trivial to
determine from user-mode and could be a random value (e.g. defined by the
lookaside list structure or the processor control block) XOR’ed with the address
of the chunk. Note, however, that this would not necessarily prevent exploitation
in situations where an attacker can write to a chosen offset from an allocated
chunk (array indexing vulnerabilities).

5.3 PendingFrees Next Pointer Overwrite

As PendingFrees lists are singly-linked, they obviously share the same problems
as the aforementioned lookaside lists. Thus, PendingFrees lists could also benefit
from an embedded pool chunk cookie in order to prevent exploitation of pool
overflows. Although a doubly-linked list could be used instead, this would require
additional locking in ExFreePoolWithTag (upon inserting entries to the list)

which would be computationally expensive and defeat the purpose of the deferred
free list.

5.4 PoolIndex Overwrite

As PoolIndex is used as a pool descriptor array index, the proper way of ad-
dressing the attack is to validate its value against the total number of array
entries before freeing a chunk. In turn, this would prevent an attacker from ref-
erencing an out-of-bounds array index and controlling the pool descriptor. The
PoolIndex overwrite, as demonstrated in Section 4, could also be prevented if
the kernel pool performed validation on bordering chunks before linking in.

Note that this technique was also another clear case of null-pointer abuse.
Thus, denying mapping of virtual address null (0) in non-system processes could
be a solution not only to address this particular attack, but many other ex-
ploitable null-pointer kernel vulnerabilities as well. Currently, the null page is
primarily used for backwards compatibility, such as by the Virtual Dos Machine
(VDM) for addressing 16-bit memory in WOW applications. Hence, an attacker
could circumvent a null page mapping restriction by injecting into a WOW pro-
cess.

5.5 Quota Process Pointer Overwrite

In Section 3.5 we showed how an attacker could leverage a pool corruption
vulnerability to dereference an arbitrary process object pointer. This was par-
ticularly easy to perform on x64 systems as the pointer was being stored in the
pool header, and not at the end of the pool chunk as the case was with x86 sys-
tems. In order to prevent exploitation involving the use of this pointer, simple
encoding (using a constant unknown to the attacker) could be used to obfuscate
its actual value. However, an obvious problem with this approach is that pool
corruptions could be significantly more difficult to debug as improperly decoded
pointers would likely reference data unrelated to the crash. Still, there are cer-
tain checks that can be made to validate a decoded pointer, such as ensuring
that it is properly aligned and within expected bounds.

6 Conclusion

In this paper we’ve shown that in spite of safe unlinking, the Windows 7 kernel
pool is still susceptible to generic attacks. However, most of the identified attack
vectors can be addressed by adding simple checks or adopting exploit prevention
features from the userland heap. Thus, in future Windows releases and service
packs, we are likely to see additional hardening of the kernel pool. In particular,
the kernel pool would benefit greatly from a pool header checksum or cookie in
order to thwart exploitation involving pool header corruption or malicious pool
crafting.

References

[1] Alexander Anisimov: Defeating Microsoft Windows XP SP2 Heap
Protection and DEP Bypass. http://www.ptsecurity.com/download/

defeating-xpsp2-heap-protection.pdf

[2] Adam Barth, Collin Jackson, Charles Reis: The Security Architecture
of the Chromium Browser. http://crypto.stanford.edu/websec/chromium/

chromium-security-architecture.pdf

[3] Pete Beck: Safe Unlinking in the Kernel Pool. Microsoft Security Re-
search and Defense. http://blogs.technet.com/srd/archive/2009/05/26/

safe-unlinking-in-the-kernel-pool.aspx

[4] Dion Blazakis: Interpreter Exploitation: Pointer Inference and JIT Spraying. Black
Hat DC 2010. http://www.semantiscope.com/research/BHDC2010

[5] Matt Conover & Oded Horovitz: Windows Heap Exploitation. CanSecWest 2004.
[6] Matthew Jurczyk: Windows Objects in Kernel Vulnerability Exploita-

tion. Hack-in-the-Box Magazine 002. http://www.hackinthebox.org/misc/

HITB-Ezine-Issue-002.pdf

[7] Matthew Jurczyk: Reserve Objects in Windows 7. Hack-in-the-Box Magazine 003.
http://www.hackinthebox.org/misc/HITB-Ezine-Issue-003.pdf

[8] Kostya Kortchinsky: Real World Kernel Pool Exploitation. SyScan 2008. http:

//www.immunitysec.com/downloads/KernelPool.odp

[9] Adrian Marinescu: Windows Vista Heap Management Enhancements. Black
Hat USA 2006. http://www.blackhat.com/presentations/bh-usa-06/

BH-US-06-Marinescu.pdf

[10] Microsoft Security Bulletin MS10-058: Vulnerabilities in TCP/IP Could Allow
Elevation of Privilege. http://www.microsoft.com/technet/security/Bulletin/
MS10-058.mspx

[11] mxatone: Analyzing Local Privilege Escalation in win32k. Uninformed Journal,
vol. 10, article 2. http://www.uninformed.org/?v=10&a=2

[12] Office Team: Protected View in Office 2010. Microsoft Office 2010 Engi-
neering. http://blogs.technet.com/b/office2010/archive/2009/08/13/

protected-view-in-office-2010.aspx

[13] Kyle Randolph: Inside Adobe Reader Protected Mode - Part 1 - Design. Adobe Se-
cure Software Engineering Team (ASSET) Blog. http://blogs.adobe.com/asset/
2010/10/inside-adobe-reader-protected-mode-part-1-design.html

[14] Ruben Santamarta: Exploiting Common Flaws in Drivers. http://reversemode.
com/index.php?option=com_remository&Itemid=2&func=fileinfo&id=51

[15] Hovav Shacham: The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In Proceedings of CCS 2007, pages 552561.
ACM Press, Oct. 2007.

[16] SoBeIt: How To Exploit Windows Kernel Memory Pool. Xcon 2005. http:

//packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf

[17] Matthieu Suiche: Microsoft Security Bulletin (August). http://moonsols.com/

blog/14-august-security-bulletin

http://www.ptsecurity.com/download/defeating-xpsp2-heap-protection.pdf
http://www.ptsecurity.com/download/defeating-xpsp2-heap-protection.pdf
http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://crypto.stanford.edu/websec/chromium/chromium-security-architecture.pdf
http://blogs.technet.com/srd/archive/2009/05/26/safe-unlinking-in-the-kernel-pool.aspx
http://blogs.technet.com/srd/archive/2009/05/26/safe-unlinking-in-the-kernel-pool.aspx
http://www.semantiscope.com/research/BHDC2010
http://www.hackinthebox.org/misc/HITB-Ezine-Issue-002.pdf
http://www.hackinthebox.org/misc/HITB-Ezine-Issue-002.pdf
http://www.hackinthebox.org/misc/HITB-Ezine-Issue-003.pdf
http://www.immunitysec.com/downloads/KernelPool.odp
http://www.immunitysec.com/downloads/KernelPool.odp
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Marinescu.pdf
http://www.microsoft.com/technet/security/Bulletin/MS10-058.mspx
http://www.microsoft.com/technet/security/Bulletin/MS10-058.mspx
http://www.uninformed.org/?v=10&a=2
http://blogs.technet.com/b/office2010/archive/2009/08/13/protected-view-in-office-2010.aspx
http://blogs.technet.com/b/office2010/archive/2009/08/13/protected-view-in-office-2010.aspx
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-protected-mode-part-1-design.html
http://reversemode.com/index.php?option=com_remository&Itemid=2&func=fileinfo&id=51
http://reversemode.com/index.php?option=com_remository&Itemid=2&func=fileinfo&id=51
http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf
http://packetstormsecurity.nl/Xcon2005/Xcon2005_SoBeIt.pdf
http://moonsols.com/blog/14-august-security-bulletin
http://moonsols.com/blog/14-august-security-bulletin

	Introduction
	Kernel Pool Internals
	Non-Uniform Memory Architecture
	System Memory Pools
	Pool Descriptor
	ListHeads Lists (Free Lists)
	Lookaside Lists
	Large Pool Allocations
	Allocation Algorithm
	Free Algorithm
	AMD64/x64 Kernel Pool Changes

	Kernel Pool Attacks
	ListEntry Flink Overwrite
	Lookaside Next Pointer Overwrite
	PendingFrees Next Pointer Overwrite
	PoolIndex Overwrite
	Quota Process Pointer Overwrite

	Case Study: CVE-2010-1893
	About the Vulnerability
	Preparing Pool Memory
	Using PoolIndex Overwrite

	Kernel Pool Hardening
	ListEntry Flink Overwrite
	Lookaside Next Pointer Overwrite
	PendingFrees Next Pointer Overwrite
	PoolIndex Overwrite
	Quota Process Pointer Overwrite

	Conclusion

